Year 13 Mathematics IAS 3.3 Trigonometry

Robert Lakeland & Carl Nugent

Contents

I (7.	Achievement Standard
	Review of Earlier Trigonometric Work
	Trigonometric Graphs
	Finding a Particular Solution to a Trigonometric Equation
	General Solutions of Trigonometric Equations
	Modelling Practical Situations using Trigonometric Functions
	Reciprocal Trigonometric Functions
	Compound Trigonometric Formulae
	Double Angle Formulae
	Double Angle Formulae
	Sum and Product Formulae
	Applications of Trigonometry
	Practice Internal Assessment
	Formulae
	Answers

NCEA 3 Internal Achievement Standard 3.3 – Trigonometry

This achievement standard involves applying trigonometric methods in solving problems.

Achievement	Achievement with Merit	Achievement with Excellence
Apply trigonometric methods in solving problems.	• Apply trigonometric methods, using relational thinking, in solving problems.	 Apply trigonometric methods, using extended abstract thinking, in solving problems.

- This achievement standard is derived from Level 8 of The New Zealand Curriculum and is related to the achievement objectives
 - manipulate trigonometric expressions
 - form and use use trigonometric equations

in the Mathematics strand of the Mathematics and Statistics Learning Area.

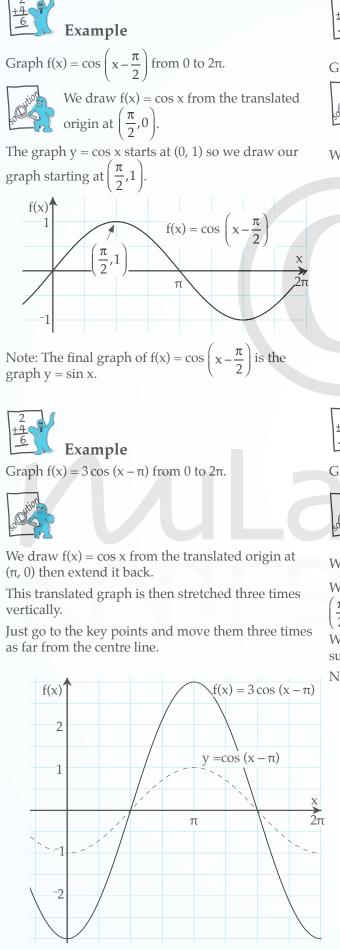
- Apply trigonometric methods in solving problems involves:
 - selecting and using methods
 - demonstrating knowledge of concepts and terms
 - communicating using appropriate representations.
- Relational thinking involves one or more of:
 - selecting and carrying out a logical sequence of steps
 - connecting different concepts or representations
 - demonstrating understanding of concepts
 - forming and using a model;

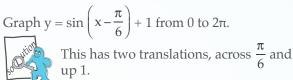
and also relating findings to a context, or communicating thinking using appropriate mathematical statements.

- Extended abstract thinking involves one or more of:
 - devising a strategy to investigate or solve a problem
 - identifying relevant concepts in context
 - developing a chain of logical reasoning, or proof
 - forming a generalisation;

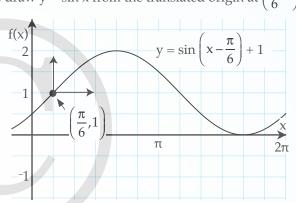
and using correct mathematical statements, or communicating mathematical insight.

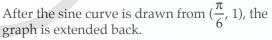
- Problems are situations that provide opportunities to apply knowledge or understanding of mathematical concepts and methods. Situations will be set in real-life or mathematical contexts.
- Methods include a selection from those related to:
 - trigonometric identities
 - reciprocal trigonometric functions
 - properties of trigonometric functions
 - solving trigonometric equations
 - general solutions.





We draw $y = \sin x$ from the translated origin at $\left(\frac{\pi}{6}, 1\right)$.





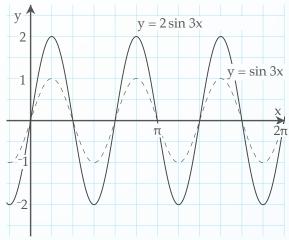
Example Graph $y = 2 \sin 3x$ from 0 to 2π .

We draw $y = \sin x$ but with a $\frac{1}{3}$ horizontal scale. Where we normally would have a maximum at

 $\left(\frac{\pi}{2}, 1\right)$ we now have a maximum at $\left(\frac{\pi}{6}, 2\right)$.

We continue this graph until 2π checking to make sure we have three complete cycles.

Now we stretch each point vertically two times.



For these Examples, three different approaches are presented for finding a particular solution. Students should concentrate on the approach they find easiest to understand. Approach 1 (in blue) is manipulation of the equation, approach 2 (in pink) is by graphing the problem and approach 3 (in yellow) is using the solver built into the graphics calculator.

Ex

ample Find one solution to the equation
$$4\sin\left(\frac{x}{2}\right) = -1.234$$

Manipulation of the equation. $4 \sin \left(\frac{x}{2}\right) = -1.234$ $\sin \left(\frac{x}{2}\right) = -0.3085$ $\frac{x}{2} = \sin^{-1}(-0.3085)$ $x = -0.313 \ 62 \ x \ 2$ $= -0.6272 (4 \ sf)$ Using the solver on the Casio 9750GII. Check your calculator is set to radians then enter the equation $4 \sin \left(\frac{x}{2}\right) = -1.234.$ EQUA EQUA MENU 8 F3 4 sin (X ÷	The graphical approach on the Casio 9750GII. Draw the graph of $y = 4 \sin \left(\frac{x}{2}\right)$ and $y = -1.234$ from 0 to 2π . We can see from the graph that these do not intersect from 0 to 2π so in the view window we change the domain to π to π then select and graph solve (G-Solv) and then intersection (ISCT). Window Xmin π max SHIFT F3 (a) SHIFT EXP EXE SHIFT π DRAW G-Solv ISCT π DRAW G-Solv ISCT F5 F5 The calculator will find the solution $x = -0.6272$.
2) SHIFT . (-) 1 2 3 4 EXE F6 Getting a soln. x = -0.6272. Example Find one solution to the equation Manipulation of the equation. $-25 \cos \left(x + \frac{\pi}{2}\right) = 20$ $\cos \left(x + \frac{\pi}{2}\right) = -0.8$	$1 = 40$ $x = 40$ $x = 20 - 25 \cos \left(x + \frac{\pi}{2}\right) = 40$ The graphical approach on the TI-84 Plus. Draw the graphs of y = 40 and y = 20 - 25 \cos \left(x + \frac{\pi}{2}\right)
$x + \frac{\pi}{2} = \cos^{-1}(-0.8)$ $x = 2.4981 - \frac{\pi}{2}$ $x = 0.9273$ (4 sf) To use the solver on the TI-84 calculator the equation must be in the form 0 = equation. $0 = 20 + 25 \cos\left(x + \frac{\pi}{2}\right)$	from $x = 0$ to $x = 2\pi$ and adjust the y values to go from -50 to 50 as this graph has a large amplitude. WINDOW \checkmark \checkmark \leftrightarrow 6 5 0 ENTER CALC intersect 5 0 ENTER GRAPH 2ND TRACE 5 You will be asked to select the curves that are to intersect and to enter a guess near each point of intersection (or use the cursor keys to move the point close to the intersection).
MATH Solver ENTER \land CLEAR 2 0 + 2 5 COS X + 2ND \land ÷ 2) ENTER Enter a guess (e.g. 0) and SOLVE ALPHA ENTER to get x = 0.9273.	The solution is $x = 0.9273$.

Modelling Practical Situations using Trigonometric Functions

OR

Modelling Practical Situations using Trigonometric Functions

If you have information about a problem that is best modelled by a trigonometric function, then we can use our understanding of amplitude, frequency and period to write an equation and subsequently solve this equation.

A periodic function that follows a sine curve will have an equation $f(x) = A \sin B (x + C) + D$. The constants A, B, C and D were defined previously. When we are modelling a practical situation we are likely to know the maximum, minimum values along with the period and horizontal shift. We use these data values to find the constants A, B, C and D

The amplitude A is given by

 $A = \frac{(maximum - minimum)}{maximum - minimum}$

The horizontal stretch B is given by

period =
$$\frac{2\pi}{B}$$

B = $\frac{2\pi}{\text{period}}$

where the period is the x value (often time) before the graph starts to repeat itself.

The horizontal translation or shift ⁻C is the distance along the x axis from x = 0 (or t = 0) until the sine curve starts. Alternatively it is the time to the maximum point minus a quarter of the period.

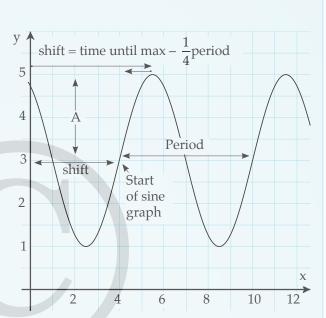
$$C = -shift$$

= -(time to maximum - $\frac{1}{4}$ period)
= -time to maximum + $\frac{1}{4}$ period
translation D is defined as the average

The vertical height.

$$D = \frac{(maximum + minimum)}{2}$$

If we study the graph shown here we can see the standard sine curve starts at the point (4, 3). It has a maximum value of 5 and a minimum value of 1 with a period of 6. The shift from the start is ⁺4.



Therefore we can find the equation by finding each constant A, B, C and D.

$$A = \frac{(\text{maximum} - \text{minimum})}{2}$$

$$= \frac{5-1}{2}$$

$$= 2$$

$$B = \frac{2\pi}{\text{period}}$$

$$= \frac{2\pi}{6} \left(\frac{\pi}{3}\right)$$

$$C = -\text{shift}$$

$$= -(\text{time to maximum} - \frac{1}{4}\text{period})$$

$$CR = -\text{time to maximum} + \frac{1}{4}\text{period}$$

$$= -4$$

$$D = \frac{(\text{maximum} + \text{minimum})}{2}$$

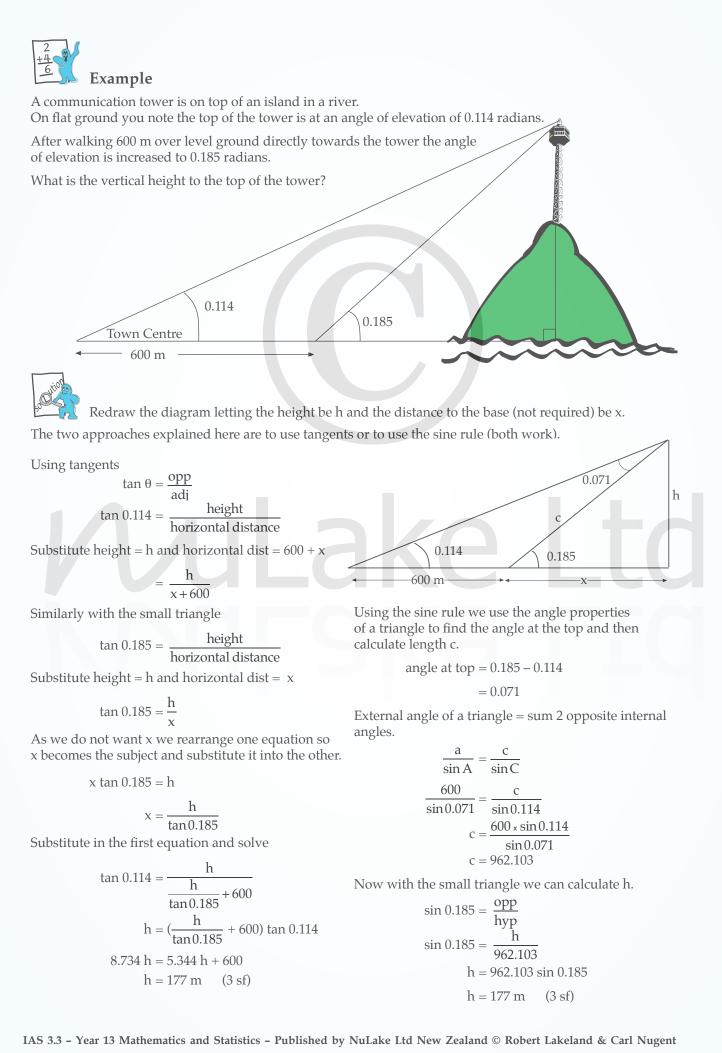
$$= \frac{(5+1)}{2}$$

$$= 3$$
The equation is therefore y = 2 sin $\frac{2\pi}{6}(x-4) + 3$

Summary: If T = period then A =
$$\frac{\max - \min n}{2}$$

B = $\frac{2\pi}{T}$
C = $-\text{time to max} + \frac{1}{4}$ period OR $-\text{time to max} + \frac{T}{4}$
D = $\frac{\max + \min n}{2}$

OR



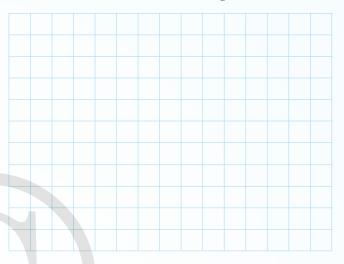
IAS 3.3 – Trigonometry

- 143. A plane is sighted at point A from a radar station at O. The plane is at an angle of elevation of 44° and at a height of 6800 metres. Some time later the same plane is sighted at point B from the radar station at an angle of elevation of 27° and at a height of 4900 metres. C and D are points on the ground vertically below points A and B and angle COD is 48°.
 - a) Draw a diagram to represent the situation described above.

Remember to label all applicable points, angles and lengths.

b) Calculate the distance between the points C and D to three significant figures.

Draw a two-dimensional diagram here.



- 144.
 - A large tree stands at the end of a road. From one particular point on the road, the top of the tree is at angle A degrees. After walking directly towards the tree along a level road for 23 metres the angle of elevation is increased to B degrees.
 - a) Show that h, the height of the tree can be represented by $h = \frac{23}{\cot A - \cot B}$
 - b) If angle A is 27° and angle B is 85° find the height of the tree to the nearest metre.

Draw a two-dimensional diagram here.

Page 35 cont... **97.** LHS = sin(x + y).sin(x - y) $= (\sin x \cos y + \sin y \cos x)(\sin x \cos y - \sin y \cos x)$ $=\sin^2 x \cdot \cos^2 y - \sin^2 y \cdot \cos^2 x$ $= \sin^2 x \cdot (1 - \sin^2 y) - \sin^2 y \cdot (1 - \sin^2 x)$ $=\sin^2 x - \sin^2 x . \sin^2 y - \sin^2 y + \sin^2 y . \sin^2 x$ $=\sin^2 x - \sin^2 y$ = RHS98. LHS = tan $\left(A - \frac{\pi}{4} \right)$ tan $\left(A + \frac{\pi}{4} \right)$ $=\frac{\left(\tan A - \tan \frac{\pi}{4}\right)\left(\tan A + \tan \frac{\pi}{4}\right)}{\left(1 + \tan A \tan \frac{\pi}{4}\right)\left(1 - \tan A \tan \frac{\pi}{4}\right)}$ $=\frac{(\tan A - 1)(\tan A + 1)}{(1 + \tan A)(1 - \tan A)}$ $\frac{-(1 - \tan A)}{(1 - \tan A)}$ - -1

99. LHS = $\cot(A + B)$

tan(A+B)1 – tan A tan B tan A + tan B Divide top and bottom by tan A.tan B 1 tan A tan B <u>tan A tan B</u> tan A tan B tan B tan A tan A tan B ' tan A tan B $\cot A \cot B - 1$ $\cot B + \cot A$ = RHS

Page 37

100. $\cos^2 4x - 0.5 = 0.5(2\cos^2 4x - 1)$ $= 0.5\cos(8x)$ 101. $\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) = 0.5\sin x$ **102.** LHS = $(\sin A - \cos A)^2$

= sin² A - 2 sin A cos A + cos² A $= 1 - 2 \sin A \cos A$ $= 1 - \sin 2A$ = RHS

Page 37 cont... **103.** RHS = $\frac{2\cos 2x}{\sin 2x}$ $=\frac{2(\cos^2 x - \sin^2 x)}{2(\cos^2 x - \sin^2 x)}$ 2 sin x cos x $\cos^2 x - \sin^2 x$ $\sin x \cos x$ cosx sinx sinx cosx $= \cot x - \tan x$ = LHS **104.** $\sin 3A = \sin(A + 2A)$ $= \sin A \cos 2A + \cos A \sin 2A$ $= \sin A (1 - 2 \sin^2 A) + 2 \sin A \cos^2 A$ $= \sin A - 2 \sin^3 A + 2 \sin A (1 - \sin^2 A)$ **121.** $W = 0.5 \cos \pi - 0.5 \cos 2x$ $= 3 \sin A - 4 \sin^3 A$ **105.** $\cos 3A = \cos (A + 2A)$ $= \cos A \cos 2A - \sin A \sin 2A$ = cos ³ A – cos A sin ² A – 2 sin ² A cos A = cos ³ A - 3 cos A sin ² A

$$= 4\cos^3 A - 3\cos A$$

Page 39

106. $x = 2n\pi \pm 2.0944$ or $x = n\pi + (-1)^n 0.3398$ x = 0.3398, 2.0944, 2.8018, 4.1888

107. $x = n\pi + (-1)^n 0.5236$ or $x = n\pi - (-1)^n 0.7297$ x = 0.5236, 2.6180, 3.8713, 5.5535

108. $x = 2n\pi \pm 0.8411$ or $x = 2n\pi \pm 2.4189$

x = 0.8411, 2.4189, 3.8643, 5.4421

109. $x = n\pi + 1.2490$ or $x = n\pi - 1.1071$

x = 1.2490, 2.0344, 4.3906, 5.1760

110. $(2\sin x - 1)(\sin x + 2) = 0$ $x = n\pi + (-1)^n 0.5236$ only x = 0.5236, 2.6180

111. $x = 2n\pi \pm 0.8411$ or $x = 2n\pi \pm 3.1416$ x = 0.8411, 3.1416, 5.4421

112. tan x = 0 $x = 0, \pi, 2\pi$ 113. $x = n\pi + (-1)^n 0.3398$ or $x = n\pi - (-1)^n 0.2526$ x = 0.3398, 2.8018, 3.3943, 6.0305

114. $P = 4 \sin 9\theta + 4 \sin \theta$ 115. $Q = \frac{1}{2}(\cos 4A + \cos (2A + 2B))$ **116.** $R = 5 \cos 10\theta + 5 \cos 2\theta$ 117. S = 2(cos(3A + 2B) - cos 5A)**118.** $T = 3(\cos 2x - \cos 4x)$ 119. $U = \cos\left(2x + \frac{\pi}{2}\right) + \cos\frac{\pi}{2}$ $=\cos\left(2x+\frac{\pi}{2}\right)$ **120.** V = sin 4x + sin $\frac{\pi}{2}$ $= \sin 4x + 1$ $= -0.5 - 0.5 \cos 2x$ **122.** $X = 3 (\cos 2\pi + \cos 2x)$ $= 3 + 3 \cos 2x$

123.
$$Y = 5(\cos^{-2}x - \cos\left(\frac{\pi}{4} + \frac{\pi}{4}\right))$$

= 5 cos 2x

Page 42

Page 41

124. $4\left(\cos\left(\frac{\pi}{3}\right) - \cos(2x)\right)$ $2x = 2n\pi \pm 2.0944$ $x = n\pi \pm 1.0472$ x = 1.0472, 2.0944, 4.1888, 5.2359 $\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$ 125. $\cos 2x = 1$ $2x = 2n\pi$ $x = n\pi$ $x = 0, \pi, 2\pi$ **126.** $\sin(2x - 0.5) + \sin(0.5) = 2 \times 0.4567$ $2x = n\pi + (-1)^n \ 0.4489 + 0.5$ $x = 0.5n\pi + (-1)^n \ 0.2244 + 0.25$ x = 0.4744, 1.596, 3.616, 4.738 **127.** $2x = n\pi + (-1)^n 0.4058 - 0.5$ $x = 0.5n\pi + (^{-1})^n \ 0.2029 - 0.25$ x = 1.118, 3.095, 4.259, 6.236 **128.** $2(\cos(4x + \pi) + \cos \pi)) = -3$ $4x + \pi = 2n\pi \pm 2.0944$ $x = 0.5n\pi \pm 0.5236 - 0.7854$ x = 0.2618, 1.3090, 1.8326, 2.8798,3.4034, 4.4506, 4.9742, 6.0214 **129.** $(2x - 0.5267) = 2n\pi \pm 1.8140$ $x = n\pi \pm 0.9070 + 0.2634$ x = 1.1703, 2.4980, 4.3120, 5.6396